DeepL traduce Maraini: le poesie metasemantiche "sotto gli occhi" della traduzione automatica
DOI:
https://doi.org/10.62408/ai-ling.v1i1.4Keywords:
DeepL, Fosco Maraini, Machine Translation, Google Translate, phonetic symbolismAbstract
This study reflects on the translation of poetic texts characterised by literary occasionalisms by two MT systems: DeepL and Google Translate. A clear example of this is the translation process carried out in the processing of the metasemantic poems in the collection entitled Gnòsi delle fànfole by Fosco Maraini, whose invented words refer the reader to morphological and phonetic components that are known, but often not identifiable as such. By inserting, e.g., the entire text of the famous poem Il lonfo into the translators, these recognise cognitive patterns probably akin to the symbolism evoked by the morphological and phonological characters of the non-words used by the author and transpose these same patterns into non-romantic languages. Even though the final text in the target language is clearly far from a possible literary translation and the mechanism that leads one to pay attention to such textual components is not entirely transparent, the results seem to be in line with possible textual interpretations provided by a human translator. The research is thus aimed at demonstrating how machine translators, when attempting to translate similar texts, can highlight hidden text properties, such as iconic syntactic structures and phonosymbolic components, through statistical text processing.
References
Baglioni, Daniele. 2007. Poesia metasemantica o perisemantica? La lingua delle “Fànfole” di Fosco Maraini. Studi linguistici per Luca Serianni. 469–480. Roma: Salerno Editrice. http://hdl.handle.net/10278/28728
Bahdanau, Dzmitry & Cho, Kyunghyun & Bengio, Yoshua. 2014. Neural Machine Translation by jointly learning to align and translate. https://doi.org/10.48550/arXiv.1409.0473 (ultimo accesso il 13.05.2024).
Beardsley, Monore C. 1970. The aesthetic point of view. Metaphilosophy 1(1). 39–58. http://www.jstor.org/stable/24434910 (ultimo accesso il 13.05.2024).
Beccaria, Gian Luigi. 2004. Dizionario di linguistica e di filologia, metrica, retorica. Torino: Piccola Biblioteca Einaudi.
Benjamin, Walter. 1969. The task of the translator. Illuminations, Harry Zohn (trans.). 69–82. New York: Schocken.
Bernard, Andrea. 2018. DeepL: Der Schein trügt. DVÜD, 13.5.2018. https://dvud.de/2018/05/deepl-der-schein-truegt/ (ultimo accesso il 13.05.2024).
Berridge, Kent C. & Kringelbach, Morten L. 2015. Pleasure systems in the brain. Neuron 86(3). 646–664. https://doi.org/10.1016/j.neuron.2015.02.018 (ultimo accesso il 13.05.2024).
Boase-Beier, Jean & Fawcett, Antoinette & Wilson, Philip. 2014. Literary Translation: Redrawing the Boundaries. Londra: Palgrave Macmillan.
Boden, Margaret. A. 1994. What is creativity? In M. A. Boden (ed.), Dimensions of creativity, 75–117. Cambridge, Massachusetts: The MIT Press.
Bonelli, Paola & Pavan, Rossana. 2020. Grammatica d’uso della lingua tedesca. Teoria ed esercizi. Milano: Hoepli.
Brusasco, Paola. 2022. Pragmatic and cognitive elements in literary machine translation. Using Technologies for Creative-Text Translation, 161–170. New York: Routledge. https://doi.org/10.4324/9781003094159-7
Cai, Zhenguang G. & Haslett, David A. & Duan, Xufeng & Wang, Shuqi & Pickering, Martin J. 2023. Does ChatGPT resemble humans in language use? https://doi.org/10.48550/arXiv.2303.08014 (ultimo accesso il 13.05.2024).
Calabrese, Stefano. 2013. Retorica e scienze neuro-cognitive. Roma: Carocci.
Chakrabarty, Tuhin & Arkadiy, Saakyan & Smaranda, Muresan. 2021. Don’t Go Far Off: An Empirical Study on Neural Poetry. ArXiv. https://doi.org/10.48550/arXiv.2109.02972 (ultimo accesso il 13.05.2024).
Coeckelbergh, Mark. 2015. Can machines create art? Philosophy & Technology 30. 285–303 (2017). https://doi.org/10.1007/s13347-016-0231-5 (ultimo accesso il 13.05.2024).
Dogana, Fernando. 1993. Le parole dell’incanto. Esplorazioni dell’iconismo linguistico. Milano: Franco Angeli.
Duden – Die Grammatik. 2016. Struktur und Verwendung der deutschen Sprache. Sätze - Wortgruppen - Wörter. Berlin: Duden.
Dunder, Ivan & Seljan, Sanja & Pavlovski, Marko. 2021. What makes machine-translated poetry look bad? A Human Error Classification Analysis. Faculty of Organization and Informatics Varazdin. https://bit.ly/4bjoAoy (ultimo accesso il 13.05.2024).
Eco, Umberto. 2013. Dire quasi la stessa cosa: Esperienze di traduzione. Milano: Bompiani.
Elsen, Hilke. 2015. Der Faktor Lautsymbolik. JournaLIPP (4). 27–42. https://doi.org/10.5282/journalipp/4848
Elsen, Hilke. 2016. Einführung in die Lautsymbolik. Berlino: Erich Schmidt.
Elsen, Hilke. 2017. Ist das Phonästhem eine morphologische oder eine lautsymbolische Erscheinung? 1. Zeitschrift für Wortbildung/Journal of Word Formation 1(2). 9–29. https://doi.org/10.3726/zwjw.2017.02.01 (ultimo accesso il 13.05.2024).
Erard, Michael. 2007. Winged words. Vocabulary.com: Behind the Dictionary. https://www.vocabulary.com/articles/dictionary/winged-words/ (ultimo accesso il 13.05.2024).
Fornasari, Andrea Giuseppe. 1852. Grammatica teorico-pratica della lingua tedesca. Vienna e Milano: Libreria Tendler e Comp.
Gallotta, Bruno. 2007. Manuale di poesia e musica: il testo poetico e il suo rapporto con la musica. Analisi, esercitazioni e glossari. Milano: Rugginenti Editore.
Genzel, Dmitriy & Uszkoreit, Jakob & Och, Franz. 2010. “Poetic” statistical Machine Translation: Rhyme and meter. Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. 158–166. Cambridge, MA: Association for Computational Linguistics.
Görög, Attila. 2014. Dynamic Quality Framework: quantifying and benchmarking quality. Tradumàtica: tecnologies de la traducció. 443. https://doi.org/10.5565/rev/tradumatica.66 (ultimo accesso il 13.05.2024).
Guerberof-Arenas, Ana & Toral, Antonio. 2022. Creativity in translation: Machine Translation as a constraint for literary texts. Translation Spaces 11 (2). 184–212. https://doi.org/10.1075/ts.21025.gue (ultimo accesso il 13.05.2024)
Guerberof-Arenas, Ana & Toral, Antonio. 2023. To be or not to be: a translation reception study of a literary text translated into Dutch and Catalan using machine translation. https://doi.org/10.48550/arXiv.2307.02358 (ultimo accesso il 13.05.2024).
Hidalgo-Ternero, Carlos Manuel. 2020. Google Translate vs. DeepL: analysing neural machine translation performance under the challenge of phraseological variation. In Mogorrón Huerta, Pedro (ed.), Multidisciplinary Analysis of the Phenomenon of Phraseological Variation in Translation and Interpreting. MonTI Special Issue 6. 154–177. https://doi.org/10.6035/MonTI.2020.ne6.5 (ultimo accesso il 13.05.2024).
Hiebel, Hans. 2005. Das Spektrum der modernen Poesie: 1900-1945. Würzburg: Königshausen & Neumann.
Humblé, Philippe. 2019. Machine Translation and poetry. The case of English and Portuguese. Ilha do Desterro 72 (2). 41–56. https://doi.org/10.5007/2175-8026.2019v72n2p41 (ultimo accesso il 13.05.2024).
Jakobson, Roman. 1987. On linguistic aspects of translation. In On Translation (Reuben A. Brower), Cambridge (Massachusetts): Harvard University Press.
Khoshafah, Faten (2023). Chatgpt for arabic-english translation: Evaluating the accuracy. Research Square. https://doi.org/10.21203/rs.3.rs-2814154/v2 (ultimo accesso il 13.05.2024).
Kuzman, Taja & Vintar, Špela & Arcan, Mihael. 2019. Neural Machine Translation of literary texts from English to Slovene. In: Proceedings of the Qualities of Literary Machine Translation, 1–9. Dublin: European Association for Machine Translation.
Lee, Tong-King. 2014. Translation, materiality, intersemioticity: Excursions in experimental literature. In Walsh Matthews, Stephanie & Leone, Massimo & Pelkey, Jamin (eds.), Semiotica, vol. 2014, 202. 345–364. https://doi.org/10.1515/sem-2014-0044 (ultimo accesso il 13.05.2024).
Li, Linlin & Sporleder, Caroline. 2010. Linguistic cues for distinguishing literal and non-literal usages. In: Coling 2010: Posters. 683–691. Beijing, China. Coling 2010 Organizing Committee.
Magnus, Margaret. 2001. What’s in a word?: Studies in phonosemantics. Istituto di lingue e letteratura della NTNU Open. http://hdl.handle.net/11250/243679 (ultimo accesso il 13.05.2024).
Malvaldi, Marco. 2018. Per ridere aggiungere acqua. Piccolo saggio sull’umorismo e il linguaggio. Milano: Rizzoli.
Maraini, Toni. 2019. Breve genesi e storia delle fànfole. Introduzione di Toni Maraini. In: Gnòsi delle fànfole. Milano: La nave di Teseo.
Marcellini, Maro. 2007. Prefazione a: Gnosi delle fànfole. Milano: Baldini e Castoldi.
Merkert, Pina. 2017. Maschinelle Übersetzer: DeepL macht Google Translate Konkurrenz. Heise online – IT, 29.8.2017. http://bit.ly/3u0mau4 (ultimo accesso il 13.05.2024).
Mortara Garavelli, Bice. 2010. Il parlar figurato. Manualetto di figure retoriche. Roma-Bari: Laterza.
Niño, Ana. 2020. Exploring the use of online machine translation for independent language learning. Research in Learning Technology 28. https://doi.org/10.25304/rlt.v28.2402 (ultimo accesso il 13.05.2024).
Nobile, Luca. 2005. L’origine fonosimbolica del valore linguistico nel vocalismo dell’italiano standard. Rivista di Filologia Cognitiva 1. 1–45. hal-04127599
Polakova, Petra & Klimova, Blanka. 2023. Using DeepL translator in learning English as an applied foreign language - An empirical pilot study. Heliyon, 9(8), e18595. https://doi.org/10.1016/j.heliyon.2023.e18595 (ultimo accesso il 13.05.2024).
Reyes, Antonio & Rosso, Paolo & Veale, Tony. 2013. A multidimensional approach for detecting irony in Twitter. Lang Resources & Evaluation 47. 239–268. https://doi.org/10.1007/s10579-012-9196-x (ultimo accesso il 13.05.2024).
Rothwell, Andrew. 2009. Translating ‘Pure Nonsense’: Walter Benjamin meets Systran on the dissecting table of Dada. Romance Studies 27(4). 259–272. https://doi.org/10.1179/026399009X12523296128713 (ultimo accesso il 13.05.2024).
Salmon, Laura & Mariani, Manuela. 2012. Bilinguismo e traduzione: dalla neurolinguistica alla didattica delle lingue. Milano: Angeli.
Schenk, Deborah H. 2011. Exploiting the salience bias in designing taxes. Yale Journal on Regulation 28(2). 253–312.
Shutova, Ekaterina & Teufel, Simone & Korhonen, Anna. 2013. Statistical metaphor processing. Computational Linguistics 39(2). 301–353. https://doi.org/10.1162/COLI_a_00124 (ultimo accesso il 13.05.2024).
Sontag, Susan. 1994. Against Interpretation and Other Essays. Londra: Vintage.
Studzińska, Joanna. 2020. Test Turinga dla (automatycznego) prezkładu poezji [Test di Turing per la riproduzione (automatica) di poesie]. Porównania [Confronti] 1(26). https://doi.org/10.14746/por.2020.1.17 (ultimo accesso il 13.05.2024).
Simone, Raffaele. 2008. Fondamenti di linguistica. Roma-Bari: Laterza.
Toral, Antonio & Way, Andy. 2018. What level of quality can Neural Machine Translation attain on literary text? Translation quality assessment: From principles to practice. 263–287. https://doi.org/10.48550/arXiv.1801.04962 (ultimo accesso il 13.05.2024).
Toral, Antonio & Oliver González, Antoni & Ribas Ballestin, Pau. 2020. Machine Translation of novels in the age of transformer. In Porsiel, Jörg (ed.), Maschinelle Übersetzung für Übersetzungsprofis, 276–296. BDÜ Fachverlag. https://doi.org/10.48550/arXiv.2011.14979 (ultimo accesso il 13.05.2024).
Vaswani, Ashish & Shazeer, Noam & Parmar, Niki & Uszkoreit, Jakob & Jones, Lilion & Gomez, Aidan N. & Kaiser Lukasz & Polosukhin, Illia. 2017. Attention is all you need. Advances in Neural Information Processing systems 30. https://doi.org/10.48550/arXiv.1706.03762 (ultimo accesso il 13.05.2024).
Zajdel, Alicja. 2022. Catching the meaning of words. Can Google Translate convey metaphor? Using Technologies for Creative-Text Translation. 139–160. New York: Routledge.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Francesco Saccà

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.